Equation of state of hot dense hyperonic matter in the Quark-Meson-Coupling (QMC-A) model
Abstract
We report a new equation of state (EoS) of cold and hot hyperonic matter constructed in the framework of the quark-meson-coupling (QMC-A) model. The QMC-A EoS yields results compatible with available nuclear physics constraints and astrophysical observations. It covers the range of temperatures from T = 0 to 100 MeV, entropies per particle S/A between 0 and 6, lepton fractions from YL = 0.0 to 0.6, and baryon number densities nB = 0.05-1.2 fm-3. Applications of the QMC-A EoS are made to cold neutron stars (NSs) and to hot proto-neutron stars (PNSs) in two scenarios: (i) lepton-rich matter with trapped neutrinos (PNS-I) and (ii) deleptonized chemically equilibrated matter (PNS-II). We find that the QMC-A model predicts hyperons in amounts growing with increasing temperature and density, thus suggesting not only their presence in PNS but also, most likely, in NS merger remnants. The nucleon-hyperon phase transition is studied through the adiabatic index and the speed of sound cs. We observe that the lowering of (cs/c)2 to and below the conformal limit of 1/3 is strongly correlated with the onset of hyperons. Rigid rotation of cold and hot stars, their moments of inertia and Kepler frequencies are also explored. The QMC-A model results are compared with two relativistic models, the chiral mean field model (CMF), and the generalized relativistic density functional (GRDF) with DD2 (nucleon-only) and DD2Y-T (full baryon octet) interactions. Similarities and differences are discussed.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- April 2021
- DOI:
- arXiv:
- arXiv:1906.11100
- Bibcode:
- 2021MNRAS.502.3476S
- Keywords:
-
- dense matter;
- equation of state;
- stars: evolution;
- stars: neutron;
- Nuclear Theory;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 14 pages, 14 figures. Final version accepted for publication in MNRAS 2020 December 17